Depolymerization of GeO₂ and GeO₂ ' Sb₂O₃ glasses by Bi₂O₃

E. F. RIEBLING

Institute of Polymer Science, University of Akron, Akron, Ohio, USA

Glasses that contain at least 60 mol % GeO₂ were prepared in the Bi₂O₃ · GeO₂ and Bi₂O₃ · $Sb_2O_3 \cdot GeO_2$ systems. Their densities, refractive indices, and infra-red spectra were recorded. Negative molar volume deviations and positive refraction deviations occur for all of the binary glasses. These create deviations for the 60 to 80 mol % GeO₂ ternary glasses that indicate non-ideal mixing when Sb³⁺ substitutes for Bi³⁺. Also, the main Ge-O stretching vibration shifts to as low as 695 cm⁻¹ for the Bi₂O₃-rich binary and ternary glasses. All of these findings show that Bi₂O₃ more effectively depolymerizes GeO₂ than does Sb₂O₃. The probable structural reasons for this behaviour are discussed.

1. Introduction

Recently, small amounts of Sb_2O_3 (< 10 mol %) were found to favour network retention in Ge-O-Ge and Ge-O-B glasses, while larger amounts caused extensive depolymerization [1]. This behaviour of Sb_2O_3 is in contrast to that of B_2O_3 which favours network retention at all concentrations in GeO₂. The difference of behaviour can be related to the Sb-O-Sb double chain-like nature of the high temperature form of Sb_2O_3 when compared to the network structure of B_2O_3 .

In contrast to Sb_2O_3 , Bi_2O_3 possesses several crystalline polymorphs, the structures of which do not resemble those of either As_2O_3 or Sb_2O_3 . Thus, the low temperature or α form of Bi₂O₃ contains layers of Bi and O atoms with the bismuth-oxygen polyhedra sharing corners and edges to form a three-dimensional network with tunnels [2]. The high temperature or δ form of Bi₂O₃ obtained from the melt forms a face centred cubic CaF₂ structure with an oxygen deficient lattice [3], while the orthorhombic β form (obtained from the supercooled melt) possesses a two-dimensional superstructure of the δ form [4].

Although the $Bi_2O_3 \cdot GeO_2$ phase diagram indicates convenient liquid temperatures [5] from a glass formation standpoint, most attention has been focused on the unusual structure and properties of the crystalline phases such as $Bi_{12}GeO_{20}$ [6] and $Bi_4Ge_3O_{12}$ [7-10]. The former contains geometrically regular GeO₄ tetrahedra

© 1974 Chapman and Hall Ltd.

and is piezoelectric, while the latter possesses the readily substituted garnet-like structure of eulytine (Bi₄Si₃O₁₂) and exhibits the electrooptic effect.

Pure Bi₂O₃ does not form a glass as readily as either As₂O₃ or Sb₂O₃. However, glasses can be obtained when it is present in moderate concentrations in other glass forming oxide mixtures such as the alkali borates [11]. Apparently, Bi₂O₃ can play several structural roles in such glasses. As part of a continuing study of oxide glasses that contain two or more glass forming species [1, 12, 13], it was decided to examine the influence of Bi₂O₃ on Ge-O-Ge networks and also on the Ge-O-Sb polymers present in Sb₂O₃·GeO₂ glasses. This paper describes the preparative techniques used and selected physical property information obtained for binary $Bi_2O_3 \cdot GeO_2$ and ternary $Bi_2O_3 \cdot Sb_2O_3 \cdot GeO_2$ glasses that contain as much as 40 mol% Bi₂O₃. These results are then discussed in terms of network depolymerization in the absence of the typical ionic modifiers such as the alkali oxides.

2. Experimental

The glasses were prepared from electronic-grade GeO₂ (Eagle-Picher Industries, Inc), yellow reagent grade Bi₂O₃ (Matheson Coleman and Bell), and reagent grade Sb₂O₃ (Matheson Coleman and Bell). A muffle furnace (Blue-M Electric Co, Model RG-2090A-1) with an air atmosphere was used for the melting reactions.

Preliminary heating experiments with Bi_2O_3 (m.p. = 820°C) in recystallized Al_2O_3 containers (McDanel Refractory Porcelain Co) showed that molten Bi_2O_3 at 960°C is a dark, non-volatile, extremely fluid liquid that cools to a yellow solid (the dark coloured Bi_2O_5 is thermodynamically unstable above 357°C [14]). A $\frac{1}{2}$ h hold at 960°C showed just a slight penetration, but no gross attack, of the recrystallized Al_2O_3 . Hence, 32 g of each $Bi_2O_3 \cdot GeO_2$ glass were prepared in 20 cc recrystallized Al_2O_3 crucibles in such a fashion as to minimize contamination via container corrosion.

The carefully weighed and mixed batches were inserted directly into the furnace at the highest temperature to be used (1320°C for the highest GeO₂ content and 1160°C for the lowest GeO₂ content). This facilitated the reaction between the relatively viscous GeO₂ ($\eta \sim 10^6$ P at its m.p. of 1115°C) and the denser, but more fluid Bi₂O₃. Although the initial melting reactions occurred within 10 min, the mixtures were reacted and repeatedly swirled over a total of 45 to 60 min to ensure complete homogenization. No penetration or attack of the Al₂O₃ crucibles was observed and volatilization losses were about 0.3 wt %.

10 g of each ternary glass were subsequently prepared by weighing specific amounts of selected $Bi_2O_3 \cdot GeO_2$ and $Sb_2O_3 \cdot GeO_2$ [1] glasses. All samples were ground, weighed, and thoroughly mixed prior to melting in recrystallized Al_2O_3 crucibles. Homogenization temperatures ranged from 1140 to 1280°C (for the highest GeO₂ content), while the times were about 30 min. Volatilization losses ranged from 0.2 to 1.0% of the initial glass batch and were highest for the higher Sb₂O₃ content glasses. No crucible attack was noted.

Refractive indices were determined by using several series of certified index-of-refraction liquids (Cargille Laboratories, Inc) and a microscope. Specific gravities were determined with a Kraus-Jolly balance (Model 5000, Eherbach Corp.) using benzene as the immersion fluid. The details of both types of measurement are described elsewhere [15].

The infra-red spectra were recorded with a Perkin-Elmer Model 521 Grating Infra-red Spectrophotometer equipped with a referencebeam attenuator. From 6 to 17 mg of selected glass compositions were taken from the larger finely ground samples and mixed with 400mg, of KBr. The larger samples were taken from the glasses with the lower GeO₂ contents and higher Bi₂O₃ contents. Details of the pellet preparation are given elsewhere [12]. A rather shallow OH-absorption at ≈ 3400 cm⁻¹ confirmed the relatively low H₂O content of the binary and ternary glasses.

3. Results

The compositions, densities, refractive indices, and colours of the binary and ternary glasses prepared in the $Bi_2O_3 \cdot Sb_2O_3 \cdot GeO_2$ system are given in Table I. For the binary glasses, all of the weight losses during melting were assumed to be Bi_2O_3 . For the ternary glass melting conditions used, Sb_2O_3 has a much greater volatility than Bi_2O_3 . Hence, from 67 to 90% of each ternary

TABLE I Physical properties of glasses in the system Bi₂O₃·Sb₂O₃·GeO₂

Composition (mol %)			Density (g cm ⁻³)	Refractive index	Colour
Bi ₂ O ₃	Sb ₂ O ₃	GeO ₂			
9.16		90.84	4.643 ± 0.004	1.715 ± 0.005	Orange red
18.14	. <u> </u>	81.86	5.557 ± 0.017	$1.873 \pm 0.033^{*}$	Dark orange red
24 59		75.41	6.065 ± 0.013	1.910 ± 0.010	Dark orange red
32.95		67.05	6.525 ± 0.016	2.05 ± 0.01	Darker red
39 24		60.76	6.846 ± 0.036	2.07 (at least)	Darker red‡
6 50	6.50	87.00	4.561 ± 0.000	$1.758 \pm 0.018 \dagger$	Lighter yellow
11.62	11.16	77.22	5.155 ± 0.013	1.840 ± 0.010	Lighter yellow
16.96	16.38	66.66	5.597 ± 0.048	1.930 ± 0.010	Light yellow
19.49	8.45	72.06	5.867 ± 0.003	1.905 ± 0.010	Lighter yellow
7.42	20.20	72.38	4.909 ± 0.033	$1.830 \stackrel{-}{\pm} 0.010$	Light yellow

*Average of three samples.

†Average of two samples.

 $Crystalline Bi_4Ge_3O_{12}$ is light yellow [7, 16].

Figure 1 Infra-red spectra for (a) $Bi_2O_3 \cdot GeO_2$ glasses and (b) $Bi_2O_3 \cdot Sb_2O_3 \cdot GeO_2$ glasses.

melt weight loss (depending upon the original Sb_2O_3 content) was assumed to be Sb_2O_3 . The final compositions given in Table I reflect these relatively minor adjustments. It was also qualitatively observed that the high temperature melt viscosity decrease caused by the two smallest Bi_2O_3 additions appeared to be more pronounced than that caused by comparable Sb_2O_3 additions [1].

Fig. 1a shows the infra-red spectra, in the frequency region that contains the main Ge—O stretching vibration for the binary $Bi_2O_3 \cdot GeO_2$ glasses. Also shown are the spectra of pure GeO₂ glass and of a crystalline sample of Bi_2O_3 that had been quenched from 960°C. Of interest is the progressive shift of ν_{Ge-O} to lower frequencies as the Bi_2O_3 content increases. Fig. 1b shows the infra-red spectra of the five ternary glasses prepared in the $Bi_2O_3 \cdot Sb_2O_3 \cdot GeO_2$ system.

4. Discussion

4.1. Molar volumes

The molar volumes of the binary $Bi_2O_3 \cdot GeO_2$ glasses tend to increase as the Bi_2O_3 content increases (Fig. 2). This trend is similar to that observed for the addition of Sb_2O_3 to GeO_2 glass where negative deviations from additivity were noted [1]. Although the molar volume of pure Bi_2O_3 glass is unknown, it is possible to estimate a value by using the known values for the various polymorphs of Bi_2O_3 , Sb_2O_3 and As_2O_3 .

The high temperature or δ form of Bi₂O₃ crystallizes from the supercooled melt and possesses a volume of 53.7 cc at 750°C [3], but transforms to the β form at ~ 650°C. The β form of Bi₂O₃, obtained by fast quenching of the melt (because the $\beta \rightarrow \alpha$ transformation is rapid below 640°C [17]), possesses a room temperature volume of 50.37 cc [4]. This is quite close to the well documented 50.0 cc volume of $\alpha \cdot Bi_2O_3$ [2, 3, 17] and the extrapolated value (from the high temperature expansion coefficients of the α and δ forms [3]) for the δ form. Now, the volume of As_2O_3 glass is about 5% greater than that of the high temperature monoclinic form (As-O-As chain) [18], while the volume of Sb_2O_3 glass is about 10% greater than that of the high temperature rhombohedral form (Sb-O-Sb chains) [18]. Thus, one can estimate a molar volume of about 55.0 cc for Bi₂O₃ glass and use

Figure 2 Molar volume as a function of composition for $Bi_2O_3 \cdot GeO_2$ glasses and for ternary glasses with $[Bi^{3+}] = [Sb^{3+}]$.

it to calculate ideal mixing volumes for Bi_2O_3 . GeO₂ glasses.

Use of the above procedure leads one to conclude that the Bi₂O₃·GeO₂ glasses do exhibit considerable negative deviations from ideality (Fig. 2). For example, the deviation is -9.0% at 20 mol % Bi₂O₃ and -7.5% at 40 mol % Bi₂O₃. These deviations are six and three times, respectively, the contractions observed for similar additions of Sb₂O₃ [1]. They suggest a considerable degree of interaction between Bi₂O₃ and GeO₂, so considerable that the GeO₄ tetrahedral network may have experienced considerable alteration with the addition of 20 mol % Bi₂O₃.

Normally, a glass is about 5 to 10% more voluminous than its stable high temperature polymorph. Thus, GeO₂ glass is 17.7% more voluminous than its quartz-like form, while SiO₂ glass is only about 5% more voluminous than cristobalite, but 19% more voluminous than quartz. However, the observed volume of a 40 mol % Bi₂O₃ glass (Fig. 2) is only 2.4% larger than that reported for crystalline Bi₄Ge₃O₁₂ [9, 10]. Thus, either the 40 mol % Bi₂O₃ glass is not as voluminous as expected and/or crystal-

line $Bi_4Ge_3O_{12}$ is more voluminous than expected.

Crystalline $Bi_4Ge_3O_{12}$ is isomorphous with eulytine $(Bi_4Si_3O_{12})$ which is known to contain irregularly co-ordinated Bi ions (BiO₆ octahedra) that link discrete SiO_4 tetrahedra [19]. In addition, the Ge—O distance in Bi_2GeO_5 [20] is within the range normally found for GeO₄ tetrahedra is a variety of crystals [6]. Finally, GeO₄ tetrahedra are known to exist in crystalline $Bi_{12}GeO_{20}$ [6]. Thus, there is little doubt that GeO₄ tetrahedra exist at practically all crystalline compositions in the $Bi_2O_3 \cdot GeO_2$ system. Thus, it is rather unlikely that the relative densification exhibited by a 40 mol % Bi₂O₃ germanate glass is associated with a change of co-ordination for germanium. It is also doubtful that there is any significant change of co-ordination experienced by the bismuth because (a) BiO_5 and BiO_6 exist in $\alpha \cdot Bi_2O_3$ [2], (b) BiO₆ quite probably exist in the β [4] and δ [3] forms, (c) BiO₇ (really BiO₅) exist in Bi₁₂GeO₂₀ [6], (d) BiO₆ exist in Bi₂GeO₅ and Bi_2SiO_5 [20], and (e) irregular BiO_6 exist in $Bi_4Si_3O_{12}$ (and, therefore, in $Bi_4Ge_3O_{12}$) [19].

A molar volume plot for the crystalline phases in the $Bi_2O_3 \cdot GeO_2$ system reveals that the volume of $Bi_{12}GeO_{20}$ is about 1.5 cc (or ~ -3.3%) less than the ideal mixing line between Bi₂O₃ (as noted above, all three forms possess volumes close to 50.0 cc) and quartz-like GeO₂. In contrast, the volume of $Bi_4Ge_3O_{12}$ is about 1.0 cc (or $\sim +3\%$) greater than the ideal mixing line. The relatively efficient packing in Bi₁₂GeO₂₀ may be related to the regular tetrahedral angle of the GeO₄ tetrahedra (it usually varies by about $\pm 4^{\circ}$ [6]). The garnet-like structure exhibited by $Bi_4Ge_3O_{12}$ is characteristic of a variety of silicates of the formula X₃Y₂Si₃O₁₂ and is known to involve 2YO₆ octahedra and 3XO₈ dodecohedra that effectively *separate* the SiO_4 tetrahedra [21]. However, in $Bi_4Si_3O_{12}$ and $Bi_4Ge_3O_{12}$ there are only four, not five, cations to fill the octahecral and dodecahedral "holes". In addition all of the four cations are Bi³⁺. Thus, the eulytine structure of Bi₄Ge₃O₁₂ contains completely isolated, from each other, GeO₄ tetrahedra as well as empty cation sites. These two factors could thereby account for a relative "bloating" of the crystal and, hence, create the relatively small volume difference between the crystal and its glass.

The molar volumes for various GeO_2 levels are shown in Fig. 3 for the ternary $\text{Bi}_2\text{O}_3 \cdot \text{Sb}_2\text{O}_3 \cdot$ GeO_2 glasses. Particularly striking are the nega-

Figure 3 Molar volume as a function of [Bi/Bi + Sb] for $Bi_2O_3 \cdot Sb_2O_3 \cdot GeO_2$ glasses of constant GeO content.

tive deviations exhibited by all of the Bi=Sbglasses and by the lower GeO₂ content glasses with higher [Bi/Bi + Sb] ratios. These volume trends show that ideal mixing is not commonplace in these ternary glasses. The substitution of Sb³⁺ for Bi³⁺, particularly at the lower GeO₂ levels, appears to cause no significant bloating of the proposed amorphous, garnet-like structure of the 30 to 40 mol % Bi₂O₃ glasses until about a third of the bismuth atoms have been replaced. Then, the volume starts to increase significantly. This phenomenon suggests that Sb³⁺ and Bi³⁺ depolymerize the GeO₄ network differently. They may do this because of the aforementioned structural dissimilarities between their various high temperature polymorphs.

4.2. Refractive indices

Fig. 4a shows the linear dependence of refraction on composition for the binary $Bi_2O_3 \cdot GeO_2$ glasses and also for those ternary glasses with $[Bi^{3+}] = [Sb^{3+}]$. Normally, the refraction of a crystal is greater than that of its glass form because of the more efficient packing in the former. For example, the refractive indices of the quartz forms of GeO_2 and SiO_2 are about 6 to 6.5% larger than those of their respective glasses [22]. However, the refractive index of the 40

Figure 4 Refractive index versus composition for (a) $Bi_2O_3 \cdot GeO_2$ glasses and for ternary glasses with $[Bi^{3+}] = [Sb^{3+}]$ and (b) ternary glasses containing 72 mol % GeO_2 .

mol % Bi₂O₃ binary glass shown in Fig. 4a is about 2% larger than the value of its crystalline counterpart Bi₄Ge₃O₁₂ [7]. The latter value (N = 2.07) is about 2% less than the crystalline value expected for ideal mixing between quartzlike GeO₂ and cubic Bi₁₂GeO₂₀ (N = 2.55 [23]). This finding also suggests that the packing in crystalline $Bi_4Ge_3O_{12}$ is not as efficient as expected and, hence, agrees with the volume analysis.

Both As₂O₃ and Sb₂O₃ glasses possess refractive indices that are about 8% less than those of their respective high temperature crystalline polymorphs [18]. Simple extrapolation of the known refractive indices of Bi₄Ge₃O₁₂ and Bi₁₂GeO₂₀ allows a refraction estimate of about 2.70 for the face centred $\delta \cdot Bi_2O_3$. These two pieces of information allow a predicted refraction of ~ 2.50 for Bi₂O₃ glass. A similar value of about 2.60 is obtained from an extrapolation of a refraction versus molecular weight for the group V trioxide glasses.

The above analysis allows one to conclude that the binary $Bi_2O_3 \cdot GeO_2$ glasses do in fact exhibit positive deviations of refraction from additivity. The deviation amounts to +7.5% for the 40 mol % Bi_2O_3 glass (Fig. 4a) and is indicative of a more efficient mode of packing than expected for these glasses. This conclusion agrees with that derived separately from the volume results.

It can be inferred from the $[Sb^{3+}] = [Bi^{3+}]$ glass results (Fig. 4a) and seen directly for the 72 mol % GeO₂ glasses in Fig. 4b that there are respectively, small or slightly negative, refraction deviations for these ternary glasses. However, since both the Bi₂O₃·GeO₂ and Sb₂O₃·GeO₂ glasses exhibit fairly significant refraction deviations from ideality (+5 to +7% at lower GeO₂ levels) these ternary glasses also exhibit the same deviations. The latter deviations are just a little less positive.

4.3. Infra-red spectra

The frequency of each transmission minimum has been plotted as a function of composition in Fig. 5. There is no significant difference between the effects of Sb₂O₃ and Bi₂O₃ for GeO₂ contents above ~ 87 mol %. However, the shift of ν_{Ge-O} to longer wavelengths is significantly more pronounced with Bi₂O₃ additions than with Sb₂O₃ additions for the lower GeO₂ levels. Such frequency shifts for a given vibration have been associated with a change from condensed or polymerized polyhedra to discrete or less polymerized polyhedra in a variety of crystals [24] and glasses [1, 12, 13]. The present results (Fig. 5) therefore, suggest that Bi₂O₃ tends to depolymerize GeO₂ to a considerable degree.

The shift of ν_{Ge-O} to 695 cm⁻¹ for the 40 mol % Bi₂O₃ glass is similar to the ν_{Ge-O} 758

Figure 5 Dependence of v_{Ge-O} on composition for $Bi_2O_3 \cdot GeO_2$ glasses and for ternary glasses with $[Bi^{3+}] = [Sb^{3+}]$.

reported for ortho germanates [25] and for germanate garnets [26], all of which contain discrete GeO₄ tetrahedra. Since the garnet-like Bi₄Ge₃O₁₂ (also contains 40 mol % Bi₂O₃) is known to contain discrete GeO₄ tetrahedra, their presence in the 40 mol % Bi₂O₃ germanate glass can be directly inferred. Thus, the addition of 40 mol % Bi₂O₃ can completely depolymerize the random three-dimensional network found in GeO₂ glass.

Fig. 5 also shows that the substitution of Sb³⁺ for Bi³⁺ in the lower GeO₂ content ternary glasses appears to have little effect on the value of v_{Ge-O} . This is readily apparent in Fig. 6 which depicts the value of $v_{Ge=0}$ as a function of [Bi/Bi + Sb] for several series of constant GeO_2 content glasses. Most of the ν_{Ge-O} increase observed for the lower GeO₂ content glasses occurs only after two-thirds of the Bi³⁺ have been replaced by Sb³⁺. These results suggest that in contrast to the 90 mol % GeO₂ glasses, there is a change in the degree of cross-linking that occurs for glasses close to the Sb₂O₃ · GeO₂ binary in the 60 to 70 mol % GeO₂ region. The GeO₄ tetrahedra in such glasses may actually be partially clustered, compared to their Bi₂O₃-rich

Figure 6 Dependence of v_{Ge-O} on [Bi/Bi + Sb] for $Bi_2O_3 \cdot Sb_2O_3 \cdot GeO_2$ glasses of constant GeO₂ content.

counterparts. The cause of this clustering may be the tendency for the antimony-oxygen polyhedra to adapt a chain-like arrangement, with concurrent clustering, at elevated temperatures.

Thus, essentially two types of behaviour can be deduced from the infra-red results. First, almost ideal substitution of Sb^{3+} for Bi^{3+} at the higher GeO₂ contents. Second, for the lower GeO₂ contents, (a) almost complete separation of the bismuth polyhedra and GeO₄ tetrahedra for compositions close to the Bi₂O₃ · GeO₂ binary, (b) considerable, but not nearly complete, separation of antimony polyhedra and GeO₄ tetrahedra for compositions close to the $Sb_2O_3 \cdot GeO_2$ binary, and (c) a non-ideal change from (a) to (b) as the [Bi/Bi + Sb] ratio decreases.

Isofrequency contours for ν_{Ge-O} can be developed from the information presented in Figs. 5 and 6 and plotted on a ternary composition diagram as in Fig. 7. Such contours do not necessarily join glass compositions with the same degree of cross-linking because there are several ways in which a tetrahedral network can be depolymerized. However, trends between such isofrequency contours can be sensitive indicators of broad regional differences in the degree of cross-linking [1, 12, 13].

The contour trends for the GeO₂-rich ternary

Figure 7 Isofrequency contours for ν_{Ge-O} in Bi_2O_3 . Sb₂O₃.GeO₂ glasses.

glasses are symmetrically parallel to the ν_{Ge-O} maximum at GeO₂ (Fig. 7). This suggests that there are no significant differences in the degree of cross-linking between the two binary systems at GeO₂ contents above 88 mol %. However, the trends are no longer symmetrical with respect to GeO₂ for smaller GeO₂ contents. Instead, the contours start to bend around the Bi=Sb line and thereby become parallel to some Sb₂O₃ GeO₂ composition. Thus, the Sb₂O₃-rich ternary glasses that contain less than 80 mol % GeO₂ would appear to be more highly cross-linked than their Bi₂O₃-rich counterparts.

5. Conclusions

All of the physical property evidence strongly suggests that Bi_2O_3 does not necessarily depolymerize the GeO₄ network in GeO₂ glass in quite the same manner as Sb_2O_3 . Thus, there appears to be little difference of effect between Bi_2O_3 and Sb_2O_3 for GeO₂ contents above 90 mol %. The result is to produce nearly ideal mixing behaviour for such GeO₂-rich ternary glasses in the Bi_2O_3 . $Sb_2O_3 \cdot GeO_2$ systems. However, significant deviations from ideal mixing occur at lower GeO₂ contents in both binary $Bi_2O_3 \cdot GeO_2$ and ternary $Bi_2O_3 \cdot Sb_2O_3 \cdot GeO_2$ glasses. It would appear, therefore, that 40 mol % Bi_2O_3 more effectively depolymerizes GeO₂ than the same amount of Sb_2O_3 .

It has been possible to relate the depolymerizing behavioural differences of Bi_2O_3 and Sb_2O_3 to the crystalline structures adopted at elevated temperatures by these oxides and their related compounds. Thus, the high temperature form of Bi_2O_3 is decidedly less cross-linked than that of Sb_2O_3 . In addition, the structure of $Bi_4Ge_3O_{12}$ is known to contain discrete or completely depolymerized GeO₄ tetrahedra. Both of these structural factors were found to contribute to the greater effectiveness of Bi^{3+} in eliminating the GeO₄ tetrahedral network present in GeO₂ glass.

Finally, it was possible to develop isofrequency contours of ν_{Ge-O} that were readily interpretable in terms of the degree of cross-linking present for GeO₂-rich glasses in the Bi₂O₃. Sb₂O₃·GeO₂ system. This should serve to expand the role of this diagnostic technique in future glass characterization studies.

References

- 1. E. F. RIEBLING, J. Amer. Ceram. Soc. 56 (1973) 303.
- 2. G. MALMROS, Acta Chem. Scand. 24 (1970) 384.
- 3. G. GATTOW and H. SCHRÖDER, Z. Anorg. Allg. Chemie 318 (1962) 176.
- 4. G. GATTOW and D. SCHÜTZE, ibid 328 (1964) 44.
- 5. E. I. SPERANSKYA and A. A. ARSHAKUNI, Russ. J. Inorg. Chem. 9 (1964) 226.
- 6. S. C. ABRAHAMS, P. B. JAMIESON and J. L. BERN-STEIN, J. Chem. Phys. 47 (1967) 4034.
- 7. R. NITSCHE, J. Appl. Phys. 36 (1965) 2358.

- 8. G. GATTOW and H. FRICKE, Z. Anorg. Allg. Chemie 324 (1963) 287.
- 9. A. DURIF, Anal. Chem. 30 (1958) 1161.
- 10. Idem, Compt. Rend. Acad. Sci. Paris 244 (1957) 2815.
- 11. A. BISHAY and C. MAGHRABI, *Phys. Chem. Glasses* 10 (1969) 1.
- 12. E. F. RIEBLING, J. Mater. Sci. 7 (1972) 40.
- 13. E. F. RIEBLING and V. KOTIAN, *ibid* 8 (1973) 1145.
- R. C. FEAST, "CRC Handbook of Chemistry and Physics", 54th edition (Chemical Rubber Co, Cleveland, 1973/74) p. B-73.
- 15. E. F. RIEBLING, J. Chem. Phys. 55 (1971) 804.
- 16. J. LIEBERTZ, J. Crystal Growth 5 (1969) 150.
- W. C. SCHUMB and E. S. RITTNER, J. Amer. Chem. Soc. 65 (1943) 1055.
- 18. E. KORDES, Z. Physik. Chem. B43 (1939) 173.
- D. J. SEGAL, R. P. SANTORO and R. E. NEWNHAM, Z. Krist. 123 (1966) 73.
- 20. B. AURIVILLIUS, C-I. LINDBLOM and P. STENSON, Acta Chem. Scand. 18 (1964) 1555.
- 21. G. A. NOVAK and G. V. GIBBS, Amer. Mineralogist 56 (1971) 791.
- 22. J. D. MACKENZIE, J. Amer. Ceram. Soc. 46 (1963) 461.
- 23. A. A. BALLMAN, J. Crystal Growth 1 (1967) 37.
- 24. P. TARTE, Spectrochim. Acta 23A (1967) 2127.
- 25. R. HUBIN and P. TARTE, ibid 27A (1971) 683.
- 26. P. PARTE and J. PREUDHOMME, *ibid* 26A (1970) 2207.

Received 5 October and accepted 24 October 1973.